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Analytical dependences are obtained for ea!cu!ating the temperature fields of a three- 
flow heat exchanger, taking account of the nonlinearity of the balance relations. 

In complex thermal-engineering systems (TS), multiflow heat exchangers are being used 
increasingly widely - in particular, three-flow heat exchangers [i]. The problem of correct 
description of the functional relation between the six boundary temperatures of such heat ex- 
changers arises here (Fig. i). In some problems, information is also required on the internal 
temperature profiles of each of the flows or it is at least required to determine the 
principal characteristic of this profile: the mean temperature value~ The present work 
undertakes the investigation of these questions. 

The methods traditionally used to solve this problem may be arbitrarily divided into 
three basic schemes: i) numerical integration, for which the specification of three tempera- 
tures is required as the initial data; 2) artificial division of the three-flow heat ex- 
changer into two two-flow units; 3) representation of the desired solution in symbolic form, 
with the aim of subsequent manipulation of the unwieldy matrices using a computer. 

Each of these three schemes is relatively simple and convenient to use, but has serious 
deficiences, some of which would expediently be discussed here. For example, calculation by 
the first scheme requires significant machine time in comparison with analytical models. In 
fact, the number of divisions required to achieve technological accuracy (~1%) is 50-200 steps. 
If the calculation algorithm for the system requires the specification not of end values but 
input flow temperatures, however, the problem is complicated by the need for an additional 
iterative process (for more details on the two-flow analog, see [2]). 

!~ the second scheme, it is assumed that the inverse flow is divided between two direct 
flows, forming two parallel two-flow heat exchangers [3]. However, this equivalence is only 
possible in the case where the input temperatures of the direct flows are close, which is 
characteristic only for standard conditions. In the general case, however, the division 
coefficient of the inverse flow may vary markedly over the length of the heat exchanger. 
Thus, this calculation scheme may only be used ina narrow parameter range close to the stan- 
dard conditions, i.e., is only suitable for design calculations and not for test calculations. 

In the third scheme, general analytical solutions of matrix form characteristic of multi- 
flow heat exchangers are constructed. This approach seems the most promising. However, non- 
linearity of the problem leads to the need to organize the iterative process, i.e., to mul- 
tiple manipulation of the matrices and considerable use of machine time. In addition, there 
is one other thermodynamic factor requiring specific form to be given to the general matrix 
relations. In fact, the efficiency of the heat exchanger is greatest, as a rule, when the 
water equivalents of the inverse flow and the sum of the direct flows are equal. The standard 
calculation conditions are usually based on these conditions. From a mathematical viewpoint, 
however, this condition leads to degeneracy of the matrix relations, i.e., the corresponding 
determinants vanish. 

Thus, the optimal model which is of interest here must give an analytical relation be- 
tween the temperatures in a compact form suitable for engineering calculations. The corres- 
ponding expressions are obtained below. 

Consider the equations of a three-flow heat transfer, omitting the terms unimportant for 
the given problem: those associated with hydraulic losses, heat supply, heat conduction, 
etc. The influence of these factors on the heat transfer is assumed to be small, and may 
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Fig. i. Diagram of boundary-point 
indexing and conventional notation 
for three-flow heat exchanger. 

be taken into account within the framework of perturbation theory for the given solution, 
as in the case of a two-flow heat exchanger [4]. Thus, fixing the flow rates and mean 
pressure in each flow, the following equations are obtained for static conditions in a 
counterflow heat exchanger 

Os C s __~ = (k f l ) s  (TR - -  T s  ), 
Ox 

OTD = (kH)o ( T R -  T o  ), GDCf 07 ( I )  

- -  OR C ff OTR = (kIl)s  (Ts  - -  TR ) -+- (kII)m (To - -  TR ). 
Ox 

Suppose that the boundary temperatures for all the flow inputs are specified here: Ts(O) = 
Tx; TD(O) : T5; TR(1) = T3 (Fig. i). The desired quantities are: the input tem~era~ure~ 
(T2, T6, T4); the temperature fields TS(X), TD(X), TR(X); and their mean values TS, TD, T R. 

Two basic stages of the process may be isolated: i) calculation of the roots f and g 
of the characteristic determinant of Eq. (i) - i.e., the exponents in the functions 
Ti(x) = =i + 8i efx + 7i egx, i = S, R, D - and the relations between the preexponential co- 

efficients; this stage simplifies the possibility of reducing Eq. (i) to a system of two 
equations in terms of (T S - T R) and (T D - TR); 2) introducing the basic functions in Eq. 
(see Appendix), permitting the above-noted degeneracy to be obviated, and determining the 
coefficients of the expansion of TS,D, R with respect to these functions in specifying the 
boundary temperatures Tz,s, s. Finally, omitting the cumbersome intermediate calculations, 
the following expressions are obtained 

(7) 

Ts (x) = T1 + As (x) (T3 - -  Tx) + Bs (x) (T5 - -  TO, (2)  

To (x) = T5 + Ao (x) (Ts - -  Ts) + Bo (x) ( T  1 - -  T~), 

TR (x) ---- T8 + AR (x) (T1 - -  T3) + BR (x) (T5 - -  Ts). 

The f u n c t i o n s  AS,D,R(X) and BS,D,R(X) a r e  d e t e r m i n e d  by t h e  i n t e r a c t i o n  pa rame te r s  in  Eq. (1) 
and do no t  depend on t h e  boundary t e m p r a t u r e s  ( s ee  Appendix) .  Of most  i n t e r e s t  a r e  A s ( l ) ,  
BS(1), AD(1) , BD(1) , AR(O) , BR(O) , giving a set of output temperatures (T2, T6, T~). They 
may be written in closed form 

Us 
As(l) = --D--[(1 --I-b)F--b(1--a)G],  

Bs (1) = - ~  [b (G - -  F) + (1 + ab) Vo FGI, 

Ao(1) = U__...~D [a(1 + b ) F + ( 1 - - a ) G l ,  
D 

UD BD (1) = --D- [a(G-- F) + (1 + ab)VsFG], 
( 3 )  
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1 
AR (0) = - - 5  [(f + Us) F - -  a (g + Up) G], 

BR (0) = @ [b ([ + Us) f + (g + Urn) G]; 

D = Vs(1 + b) z F +  VD (! - - a )  ~ +  1 + ab, 

f = [exp ( f ) -  ll/f, O = [exp ( g ) -  ll/g, 

f = c - - e ,  g = c + e ,  e 2 = d  2+VsVD,  

a =- -Vs / (d  + e), b = --VD/(d+e),  

1 
I ( V D - - U  D @ Vs--Us), d = - - ~ ( V D - - U D - - V s  "+" Us), C = y  

Us = (k~)s Up = (kH)~ V s =  (k~)s V~ = (k~)~ 
CsC  ' ' 

(4) 

where the sign of e corresponds to the sign of d. 

Analyzing Eqs. (3) and (4), the absence of zeros in the parameter D may be noted; this 
indicates complete lifting of the above-noted degeneracy. In fact, the result of equating 
the water equivalents within the framework of Eqs. (3) and (4) is that only f or g vanishes, 
which is easily dealt with by the expansions of the dependent functions F and G. 

The temperature dependence of cS, D,R and (kH)s, D is expediently taken into account by 
P 

averaging these "constants" at each step of an iterative process specially organized within 
the framework of the given model. Here (k~)s, D is best determined from the mean temperature 
values obtained from Eq. (2) with the substitution in Eq. (6) and the modification in Eq. (8). 
However, a different, traditional, method must be used in averaging cS,D, R. In fact, the 

P 
relation GsC~(T~--T~)-+-Goc~(Ts--T6)=GRC~(T~ --T~) following from Eqs. (3) and (4) must trans- 

form to the enthalpy-balance equation Os(hl--h~)+GD(hs--h~) = OR(h~--h~) to bring this about, it 

is sufficient to assume that Cp = (hoht:- hin)/(Tou t - Tin) for each flow. If the calcula- 
tion of large systems including three-flow heat exchangers requires an increase inspeed, it 
is expedient to minimize the number of appeals to subprograms for calculating the heat-carrier 
enthalpy, by preliminary construction of the corresponding set of interpolation factors. 
However, experience in using the given programs shows that in actual TS not only linear but 
even cubic interpolation often introduces too much error into the calculation (up to 6% in 
regions of nonmonotonic behavior of Cp). This discrepancy is impermissible, since the 
whole refrigerating capacity of most TS is a few percent of the total heat transfer. The 
use of six-parameter interpolation is optimal in our view; it ensures an accuracy of within 
0.5%. No more than three appeals to the thermodynamic program are required here, with simul- 
taneous calculation of the local values of h and Cp at the ends of the temperature interval 
and in the center. In the normalized variables x m (T - Tmin)/(Tma x - Tmin); y = (h - hmin)/ 
(hma x - hmin), the corresponding polynomial may be written in the form 

g (x) = (1 - -  a + b) x + (a - -  3b + c - -  d) x z + (2b - -  2c + 4d) x ~ + (c - -  5d) x ~ + 2dx 5, (5 )  

where the coefficients 

I 1 
a = - - [ y ' ( 1 ) - - y ' ( O ) ] ,  b = - - [ y ' ( O ) + F ' ( 1 ) ] - - 1 ,  

2 2 

+ l, 
[ d = 2  y ' ( O ) + y ' ( 1 ) 4 - 4 y '  --~ - - 6  

successively characterize the parabolic, cubic, fourth, and fifth degrees of nonlinearity. 
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Fig. 2. Temperature profiles of a typical heat ex- 
changer of cryogenic systems: a) normal profile; b) 
anomalous profile; I) direct flow S; II) direct flow 
D; III) inverse flow R. 

Note that, in regions of monotonic variation in Cp, this approximation ensures an 
accuracy of hundredths of a percent. Some loss in accuracy may be due to the presence of a 
sharp maximum on the curve of Cp(T) inside the temperature range of interest here. In the 
suprcritical region, the accuracy of the approximation remains within limits of 0.5%, as 
confirmed for P > 2Pcr. 

In illustrating the relations obtained, note that, as well as the monotonic temperature 
profiles characteristic of standard conditions (Fig. 2a), various anomalous distributions 
which are of special interest in comparison with the two-flow situation are realized. In 
particular, two-flow heat transfer in analogous conditions does not permit intersection of 
the temperature profiles T S and T R. In the three-flow case, however, such intersection of 
the profiles is completely permissible (Fig. 2b) and is easily explained (If G S << G R % GD, 
then T S basically depends on the temperature TR, the profile of which is determined by the 
interaction of T R and TD). 

In conclusion, it is expedient to compare the calculation of the boundary temperatures 
with experimental data obtained in tests of one of the TS; the heat carrier is helium. 
Table 1 gives the set of experimental points and the set of theoretical ~alues obtained 
analytically from Eqs. (2)-(5) (I) and by numerical inter integration with organization of 
the iterative process with fixing of the input temperatures (II). In the direct flow S, a 
flow rate of 1.72"10 -2 kg/sec and a pressure of 1.55 MPa is maintained here; in direct flow 
D, the corresponding values are 7.72.10 -2 and 0.87 and in inverse flow R, 8.96"10 -2 and 
0.13. For these conditions, the variation<in Cp on the flow path and the curvature of the 
profiles of Cp(T) is sufficiently large; for example C(;) = 1.25 C(;); this, however, does 

not influence the accuracy of the calculations by the analytical model. It is clear from 
Table 1 that both calculation schemes give satisfactory agreement with experiment; the error 
is within 3% of the total temperature difference. As assumed above, the agreement with 1% 
accuracy between the two calculation methods requires 400 times more machine time in analyti- 
cal scheme II than for calculation by analytical model I. 

APPENDIX 

The functions determining the temperature field in Eq. (2) take the form 

As (x) = Us [(1 -[- b)/~ (x) .... b (1 - -  a) G (x)], 

Us {b [~ (x) - -  P (x)] + (g + U~) GP (x) + Z~ (f + Us) ,~6(x)}, 
B~ (x) : --D 

A~ (x) = Y ~  [a (1 + O) ~ (x) + (1 - -  a) 0 (x)], 
D 

(6) 
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TABLE i. Comparison of the Results of Experiments and 
Calculations 

Type of 
investigation r~ T2 T3 T4 T5 T~ 

Experiment 

CalcJ 

Calc.II 

34,4 

34,4 

34,4 

Not measured 

14,28 

14,14 

12,1 

12,1 

12,! 

33,1 

33,48 

33,57 

34,2 

34,2 

34,2 

16,5 

16,03 

15,91 

uo {a IG (x) - -  ? (x)l + (i + Us) Fg (x) - -  a (a" + U~) G~ (x)}, Bo (x) : - h -  
i 

A~ (x) :: -D- {(f + Us) IF - -  7' (x)] + a (g + go) [g (x) - -  G] + (f + Us) (g + go) [Fg (z) - -  G;  (x)]}, 

t 
B~ (x) = -D- {b (f + Us) [~ - -  ? (x)] + (g + Uo) [a - -  ~ (x)] + (i 4 ~i~) (g + ::o) [6~ (x) - -  P~ (x)l}; 

(x) = [exp ( f x )  - -  l l/f, G (x) = [exp ( g x )  - -  l ] / g  (7) 

where the other parameters correspond to the set in Eq. (4). The mean values of the func- 
tions AS n p and B s D R required to calculate the temperature T2, ~e, T4 may be obtained by 
replacing~x) and ~(x) in Eq. (6) by 

1 1 

-F = [ ? ( x ) d x  = (F  - -  1)/[ and G = [ G (x) d.~: ~ (G- -  1)/g.  (8)  
b 

NOTATION 

G, heat-carrier flow rate, kg/sec; T, temperature, K; h, specific enthalpy, J/kg; Cp, 
isobaric specific heat, J/kg'K; k, local heat-conduction coefficient, W/m2.K; H, heat-trans- 
fer surface, m2; x, dimensionless coordinate, varying from 0 at one end of the heat ex- 
changer (points I, 4, 5) to i at the other (points 2, 3, 6; Fig. i). Indices: S, first 
direct flow (input, point i; output, point 2); D, second direct flow (input, point 5; output, 
point 6); R, inverse flow (input, point 3; output, point 4). 
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